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On Complementary and Independent Mappings on Databases
/ Arthur M. Keller and Jeffrey D. Ullman f/
.Stanford University
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_,(SL-M deﬁna‘the notion of independent views

to indicate whether the range values of the two views
may be achieved independently. The concept of com-
plementary views indicates when the domain clement

can be uniquely determined by the range values of the
two complementary views.” We consider the relation-

ship between independent:and complementary views,

In unrestricted domains, a view (but not the identity
or empty view) can have more than one complemen-
tary, independent view. Databases, however, are more
restricted domains: They are finite power sets. A view
is monotonic if it preserves inclusion. However, in finite
power sets when all views are monotonic, if a given view
has another view which is independent and complemen-
tary, then this view is unique. .

. ——
KEYWORDS. Relational databases, database theory,
complementary mappings, independent mappings, view
update.
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Introduction

The problem of updating databases through.views is an
important practical problem that has attracted much
theoretical interest [Bancilhon 79, 81, Carlson 79,
Davidson 81, Dayal 78, 79, 82, Furtado 79, Kaplan 81,
Keller 82]. A database is a subset of a finite power set,
and a database view is a (total, many-tc-one) mapping
from one finite power set to another. The user specifies
queries to be executed against the database view; these
queries are translated to queries against the underlying
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database through query modification [Stonebraker 75).
However, in current practice, updates must be specified
against the underlying database rather than against the
view.

Since the view is only an uninstantiated window

onto the database, any updates specified against the
database view must be translated into updates against
the underlying database. The updated database state
then induces a new view state, and it is desired that
the new view state corresponds to performing the user-
specified update directly on the original view state, were
that possible. This is described by the following dia-
gram.
V(DB) U, V(DB')

/f sunsidered
G

DB
The user specifies update U against the view of the

when applied to the database. The new vi
V(DB'). This translation has no side effects in' the
view if V(DB') = U(V(DB)), that is, if the view has
changed precisely is accordance with the user’s request.
In this paper, we require that all view update transla-
tors have no side effects in the view.

Given a view definition, the question of choosing
a view update translator arises. This requires under-
standing the ways in which individual view update re-
quests may be satisficd by database updates. Any par-
ticular view update request may result in a view state
that does not correspond to any database state. Such a
view update request may not be translated without re-
laxing the constraint precluding view side effects.* Oth.
erwise, the update request is rejected by the view up-
date translator. If we are lucky, there will be precisely
one way to perform the database update that results in
the desired view update. Since the view is mnany-to-one,
the new vicw state may correspond to many database
states. Of these database states, we would like to choose
one that is “as close as possible” under somne measure
to the original database state. That is, we would like to
minimize the effect of the view update on the database.

* In ccrtain cases, we have shown that it is quite reasonable
to rclax this constraint in a limited manner [Keller 82].
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database, V(DB). The view update translator T spyp<™
plies the database update T'(U), which resu:?g;
state is
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One way to cxpress a limitation of effects of view
updates on the database is through the concept of con-
stant complements [Bancilhon 81]. Two views are com-
plementary if given the state of each view, there is a
unique corresponding database state. Intuitively, this
means that the two views are suflicient to reconstruct
the database. Bancilhon and Spyratos have observed
that by choosing a complementary view and holding it
constant, that there is at most one way to translate any
update on the given view. They have also shown that
if a view is not cmpty or the identity, then it has multi-
ple minimal complements. (A complement is minimal if
no view providing less information is also complements.
Providing more information does not adversely affect
complementarity; thercfore, the issue is only interest-
ing when we consider minimal complements.)

We observe that choosing a constant complement
may cause the view update translator to reject requests
that have translations (although none of those transla-
tions keep the complement constant). We define two
views as independent when any pair of view states cor-
responds to a database state. When independent views
are complementary, it is always possible to hold the
state of one view constant while generating any possi-
ble state of the other view. Thus, choosing an indepen-
dent complement (if one exists) permits all updates ex-
pressed against the vicw to be translated to updates ex-
pressed against the database. The question then arises
whether a view has multiple independent complements.
To answer this question, we define a view as monotonic
if it preserves inclusion (recall that the domain and
range of a view is a finite power set). Informally, a view
is monotonic if adding tuples to the database does not
remove any tuples from the view (although it could aung-

states in F (the left column) by moving across the row.
Similarly, the function g maps database states of D into
database states in G (the top row) by moving up along

the column. The equivalence classes of D induced by f

(D/f) are the rows of D. And the equivalence classes
of D induced by g (D/g) are the columns of D. We
can take the intersection of an equivalence class of D/ f
and one from D/g; this is represcnted by one box of the
diagram. The two mappings f and g are complementary
if given a databasc state in F and one in G, there is
at most one database state in D that maps into both
database states (by their respective mappings). That
means each box of the diagram has at most one ¢ in it.
This particular diagram illustrates two complementary
functions.

Updating the database D through the user view f
involves changing view states from some database in F
to another (in F). If the mapping g is to be held con-
stant, then the new database state is found by moving
along the same column (for the same image in G) from
the original row to the desired row. If the mapping to
be held constant g is complementary to f, then there
is at most one candidate resultant database in D that
maps to the same database in G (by g) and maps to
the new database in F (by f). When the bax (intersec-
tion of the view and complement equivalence classes)
is empty, the view update request cannot be performed
exactly while preserving the complement—the request
is rejected; when the intersection contains exactly one

. database, the view update request has a unique trans-

lation that preserves the complement.

The following diagram illustrates two independent
functions. Each box in D in the diagram contains at
least one o.

.l
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have multiple independent complements. However, a G Plojeje]e '
monotonic view has at most one complement that is eloeleje]e
independent and monotonic. J ololeele]ee

The following diagram illustrates two database o|ojeefes]e .

" mappings f and g. oleo]|eleeee "

F 9 Again, updating the database D through the user view S
G blojele]e / involves changing view states from some database in A
slejele]e F to another (in F). If the mapping g is to be held con-
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be held constant g is complcmentary to f, then there<
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contains exactly one database, the view update request
has a unique translation that preserves the complement;
when the intersection contains more than one database,
the view update request has several candidate transla-
tions that preserve the complement— the request is am-
biguous.

Holding a viéw complement constant means that
whenever the view update is translatable, that transla-
tion is unique. If the view held constant is independent
{from the user view), then all view update requests can
be translated, perhaps ambiguously. If the view that
is held constant is both complementary to and inde-
pendent of the user view, then all view update requests
are unambiguously translatable into database update
requests. When the views are constrained to be mono-
tonic, if a view has a independent complement, it is

We will now proceed to a formal treatment of the
results we have stated informally. -

Definitions

It is assumed that the reader is familiar with database
theory (Ullman 83] and set theory {Halmos 60].
A database is a finite power set.

DEFINITION. Let f and g be two functions whose do-

main is D. (Here we are not concerned with the range of

J and g, but only with the equivalence classes induced

on D by [ and g.) Then [ and g are independent map-

pings if . :
Vz,y][((3d1 € D)(f(dr) = 2)) A

((3d2 € D)(g(ds) = y)) —
((3d € D)(£(d) = z A g(d) = 9))].

The notion of independence we use here is differ-
ent from Rissanen’s notion of independence [Rissanen
77). His notion stated that two components were inde-
pendent when the original database could be obtained
from them by lossless joins that preserved all dependen-
cies. OQur definition relates to the ability to change the
selected range value of one mapping while keeping the
range value of the other mapping constant. This defi-
nition is useful for the problem of view updates, where
it is important to consider whether an update specified
through a view may be done without affecting another
view. '

DEFINITION (Bancilhon 81]. Let f and g be two func-
tions whose domain is D. Then f and g are comple-
mentary mappings if

Vz,y € D)[(z # ) A f(z) = [(y) — a(z) # g(y)].

DEFINITION. Two functions (mappings) f and g with
the domain D are equivalent if they induce the same
equivalence class on D. (That is D/f = D/g. Recall
that D/f is defined as follows: Vd € D,Vd' € D, d and
d' are in the same member of D/ f iff f(d) = f(d').)

We observe that independence and complementar-
ity are different propertics. Independence means that
function can generate all values of its range while an-
other function has a specific range value. Complemen-
tarity means that there is at most one element of the
domain that simultaneously results in any pair of range
values, one from each of two functions. We can give
another characterization of these two concepts. Each
function f generates a set of cquivalence classes D/f.
Given two functions f and g we can take the intersection
of equivalence classes of D/f with equivalence classes
of D/g. If all of these intersections have at most one
{(doinain) element in them, the two functions are com-
plementary. U all of these intersections have at least
one (domain) element in them, the two functions
independent. =~

DEFINITION. Let f and g be complementary and in-
dependent functions whose domain is D, and let A be
an arbitrary function whose domain is also D. Let the
range of f be F and the range of g is G. Since f and g
are complementary and independent. there is a one-to-
one correspondence between F'xG and D; thatis,de D
corresponds to a x b where a = f(d) and b = g(d). Then
the coordinatization of h over f and g is the function A’
whose domain is F x G such that h{(d) = &'(f(d),g(d)).
(We note that & is equivalent to some hg iff ' is.)

One question is when is there a unigne (up to equiv-
alence) complementary, independent function g for a
function f. For example, let f(z,y) = zand g(z,y) = y.
It is clear that these are independent and complemen-
tary. The function g'(z,y) = 2y is independent and
complementary to f but also equivalent to g. However,
the function ¢”(z,y) = z+y is independent and comple-
mentary to f but not equivalent to g. Since our domain
of intcrest is relational databases, and the mappings of
interest are relational views consisting of combinations
of sclect, project, join, and union, we will use a property
of these mappings.

Monotonic Functions

DEFINITION. An n-ary function f whose domain is
a finite power set is monotonic if (Vi)(R; C ) —
J(Ry,...,Rn) € f(S15..-,8n). (Select, project, join,
and union of relations are monotonic functions. The
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set difference operator, however, is not monotonic.)*

THEOREM. The composition of monotonic functions is
monotonic. '

PROOF. Let f and g be monotonic functions (pos-
sibly with multiple arguments). Let h be some compo-
sition of f and 3. There are two issucs to handle. The
first is that the function g is used as one or more ar-
guments of f to form h. The second ias that arguments
of A may be aliased, that is, appear several places as
arguments to f or g. To handle the first problem, we
observe that the subset relation is transitive. For ex-
ample, consider

h(ay,...,an) =
far,-..,80,0(@i41y-.-185),85415..-,Gn).

We wish to show that (Vi)(a; C b)) — h(ay,...,as) €
h(by,...,b,). Since g is monotonic, (Vi)(a; C b;) —
#Bi+1y...185) € g(bis1,...,b;). This, coupled with
the monotonicity of f, implies that h is monotonic.
Aliasing does not cause any problems, as the require-
ment that all arguments obey the inclusion is still sat-
isfied. [ ]

We will now explore some features of complemen-
tary, independent, and monotonic functions. We shall
require not only that the domain of each function is a
finite power set but also that the range be a finite power
set as well. This is reasonable since the select, project,
and join operators all result in power sets. Let f and g
be complementary, independent. and monotonic func-
tions whose domain is D and ranges are F and G (all
finite power sets), respectively. Since f and g are com-
plementary and independent, there is a one-to-one cor-
respondence between G and the elements of any equiva-
lence classes generated by f. Let G’ be the equivalence
class of f that contains the empty relation. Using the
one-to-one correspondence, we can define ¢’ : D — G’
‘as ¢’(d) = b where g(b) = g{(d) and f(b) = 0. (Essen-
tially, we have chrsen from each equivalence class gen-
erated by g the element that maps to the emptyset by
f.) Similarly, f' : D — F' is defined by f'(d) = a where
J(a) = f(d) and g(a) = @. Let us define the coordina-
tization fanction ¢ : F' x G' — D as ¢(f'(d),g'(d)) = d.
Since f and g are complementary, ¢ is a function. Since
J and g are independent, ¢ is total. We will now explore
some properties of c. First, ¢(a,0) = a (and similarly,
¢(#,5) = b) since a € F' implies f'(a) =aand g'(a) = 0.
LEMMA. Let £ : ¥ — F be a monotonic function.
Then /() = 0.

* The main of finite power sots we use is that they
are complete lattices |Birkhoff 67). .

PROOF. Let f(0) = a, and let f(d) = @. (Both F
and F’ must contain the empty set.) Since # C d and f
is monotonic, a C #. Therefore, a = #. ]

LEMMA. F' is closed under containment.

PROOF. Let a3 be a member of F' and a3 be a
subset of a;. Now g(a;) = @ since a; € F'. Since g is
monotonic, g(az) = 8. Therefore, aj is in F. ]

COROLLARY. F' is closed under intersection.

LEMMA. Let f : F' — F be a monotonic function. -
¥de F and f(d) = {e}, a singleton, then d is a
singleton,

PROOF. Suppose not. Then there exist d;,d; € d
such that d; # dj3. By our previous lemma, both {d, }
and {ds} are elements of F'. Let f({dy}) = a, and
J({da}) = as. We note that a, # a3 since f is bijective
on F — F. But the monotonicity of f implies that
ay Uas C {e}. Therefore, {¢} is not a singleton. 1

LEMMA. Let f: F' — F be a monotonic function. If
d € F' and f(d) = a, then [d| < [a]- -
PROOF. Let S be the power set of d. Since F’ is
closed under containment, S C F'. For all s in §, f(s)
is in F and f(e) C a. Furthermore, since f is bijective
on F' — F, all the f(a) are distinct. Then a has as
many subsets as d, 0 a must be at least as big as d. §

LEMMA. Let F and G be finite power sets. Then F'
(and also G') is a finite power set.

PROOF. Since F and G are finite power sets, their
cardinalities are powers of two. Let |[F| = 2™ and
|G} = 2". Then F (G) contains exactly m (n) sin-
gletons. Since there is a one-to-one correspondence be-
tween D and F x G, |D| = 2™*". Because D is a finite
power set, so D contains exactly m + n singletons. Let
Sr (8c) be the singletons in F' (G') that map into sin-
gletons in F (G). We note that |Sp| =m and |Sg| =n
since each singleton of F is mapped into by a unique sin-
gleton of F' (and consequently Sr). Since f: F' -« F
is a bijection, |F'| = 2™. Now, suppose that F’ is not
the power set generated by Sp. Since |Sp| = m, the
power set of Sr is of size 2™. As F’ is the same size as
the power set generated by Sy and they are unequal, .
there must be some element a in F' that is not in the
power set of Sp. That set a in F' tis then not the
union of some singletons Sp. Then there is some ele-
ment ag € a not in Sr. Then {ap} is a singleton that
is not in Sy. Then F' has more than m singletons. Let
us now show that ' NG’ = {0}. Everything in F' is
mapped to @ by g, while the only set in G' mapped to
@ by g is 8. Therefore, the singletons in #* and G’ are
disjoint. But F’ has more than m singletons while G’




has at least n singletons. This contradicts the fact that
D has precisely m + n singletons. ]

LEMMA. Let the domain F, F', G, and G' be finite
power sets, and let f: F¥ — F be a monotonic function.
Ifd € F' and f(d) = a, then |d| = |a].

PROOF. We have already shown that |d| < |a|. Let
si={acF'||s)=¢) Lett; = {te F||t| =i}
Since F and F’ are power scts of size 2", |o;| = |¢;| =
(7). By induction on |d| we will show that |d| = |a.
For |d| = 1, 8y is the set of singletons in F'. Since
|d| € |a|, only singletons (elemcnts of a;) may map into
the ¢;. But since |a;] = || = (}), all elements of s,
must map into elements of t;. For the induction step,
assume that all clements of s; map into elements of ¢;
for 1 < ¢ < j < n. We will show that all elements of s;
map into elements of t;. Since |d| < |a|, the elements
of F’' that map into elements of ¢; must be elements of
8; for 1 <1 < 3. But by the induction hypothesis, none
of these can be elements of s; for 1 < i < 5. Therefore
only elements of s; can map into elements of ¢;. But
la;} = Itj} = (7). Therefore all elements of s; map into
elements of tj [ ]

THEOREM. Let the domain D be a finite power set.
Then F’ and F are isomorphic (preserving monotonic-
ity) under f.

PROOF. The preceding lemma (|d| = |a|) showed
that the singletons of F and D are in one-to-one corre-
spondence. Let d = {a,,...,ax}. We will show that
f({a1,...,ax }) = {fla1),...,f(as) }. Suppose not.
Then there is some f(a;) (1 < i < k), say f(a;), not
in f(d). (From |d| = |f(d)|, we know that some of the
a; (1 € i € k) are missing and there are other single-
tons added.) By definition, {a, } C d. But since f is
monotonic, this implies f({a;}) € f(d). ]

COROLLARY. f' is monotonic.

Coordinatisation

LEMMA. Let the domain D be a finite power set, and
let / and g be monotonic, independent, and comple-
mentary. Then all the singletons of D are members of
FoG.

PROOF. Let 2™ (2”) be the size of F (G). Then
|F'| = 2™ and |G'| = 2". Since F' (G') is a power set,
there are m (n) singletons in F’ (G’). Also, |D| = 2™+",
Since D is a power set, there are m + n singletons in D.
We know that F'NG’ = {0 }. Then all of the singletons
of D are members of F' or G'. s

COROLLARY. For all d € D, there exist a € F' and
be G' such thatd =aUb.

THEOREM. Let the domain D be a finite power set.
For ¢ as the coordinatization function defined above,
¢(a,b) = aUb. (That is, f and g are monotonic, inde-
pendent, and complementary.)

PROOF. We observe that the theorem holds of
¢(a,®) = a and ¢(0,5) = b. We measure a counterexam-
ple c(a,8) =a’UY wherea #a’ or b# b and @' € F
and ¥’ € G' by the sum of the cardinalities of a and b
{la} + |b]). We perform an induction on this mcasure.
Assume that c(a,b) = aU b for all a and b such that
la] + |b] < n. Let c(a,b) =a' Ub witha #a' or b # b
and |a| + |b| = n. It is not possible that @’ C a and
b C b. (Otherwise either a’ U b = a U b—assumed
false—or |a’ Ud'| < |a Ub|, which by our induction hy-
pothesis implies ¢(a’,}’) = o’ U b'.) Without loss of
generality, assume that a’—a # 9. Let ¢ € ¢’ —a. Then
{e}Cd'ub,s0 f'({e}) C f'(a'UY) = a. Sincee € o',
{e} e F' and f'({¢ }) {e}. Sincee€ a’'~a, fle ¢ a,
a contradiction. |

Let us consider the consequence of the preceding
theorem and lemmata. Let the B be the basis set of
the domain D. (That is D is the power set of B.) Also,
let B, be the basis set of F' and B, be the basis set of
G'. Then B = By U B,.

THEOREM. Let the domaiin D be a finite power set.
Coordinatization preserves monotonicity. That is, let f
and g be monotonic, complementary, and independent
functions with domain D and ranges F and G respec-

-tively (all finite power sets), and let A be a function

with domain D, and let h’ be the coordinatization of A
over f and g [that is, h'(f(d),g(d)) = h(d)]. Then h is
monotonic iff A’ is.

PROOF. “If.” We note that A is the composition
of f, g, and k'. Therefore, if h' is monotonic, then h is
also.

“Only if.” We note that h’ is the composition of
h and ¢. If A is monotonic, then A’ is also since c is
monotonic. [ ]

Uniqueness of Independent, Complementary
Mappings

Our question now becomes when does a mapping have a
unique (up to cquivalence) monotonic, complementary,
independent mapping. For domains of finite sets, such
mappings are unique.

THEOREM. Let f, g, and A be monotonic mappings on
& domain D, a finite power set, such that the ranges
are all finite power sets, and f and g are independent
and complementary, as are f and h. Then g aud A are
equivalent,
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PROOF. Let f/, ¢’, and A’ be the coordinatizations
of [, g, and h, respectively, over f and g. Lét F be the
range of f and G be the range of g. Assume that g and A
are not cquivalent (and consequently, g’ and A'). Then
there exists some a € F and by € G such that g'(a,bo) =
g'(0,b0) but h'(a,bg) # h'(9,bg). Since coordinatization
prescrves monotonicity, h’(0,b9) C h’(a,bg). Choose b,
such that A’(a,b;) = h’(@,50). (Such a b; must ex-
ist since f’ and A’ are indcpendent.) Since f' and A’
are complementary, h'(a,b,) # &'(#,b1). Since coordi-
natigation preserves monotonicity, k'(0,b() C h'(a,b;).
Now we have k'(8,b,) C h'(a,b;) = h'(9,b0) C h'(a, bo).
We can choose b,,; such that h'(a,biy1) = h'(9,5;).
This defines an infinite sequence of sets, each of which
is a proper subset of the previous one. This is not pos-
sible when the domain is finite sets. Thus, we have
arrived at a contradiction. : [ ]

Conclusion

We have considered the relationship between indepen-
dent and complementary mappings. We have shown
that on databases on finite domains, when mappings are
monotonic, for each mapping there is at most one other
mapping that is independent and complementary to it.
The domains and ranges are all finite power sets. An in-
tersection mapping intersects each domain element with
a fixed set (called the intersection set) to produce the
result. Given a pair of mappings that are monotonic,
independent, and complementary, the two mappings are
equivalent to intersection mappings where the intersec-
tion sets are a partition of the generator of the power
set. :
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